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The problem of the displacement of the interface between water and oil of an initial form such that a cusp is formed on this 
interface at a certain iastant of time is considered in greater detail than in previous investigations. It is assumed that the viscosity 
of the water is many time smaller than that of the oil. Problems concerning the displacement of similar lines (under more general 
assumptions) are briefly reviewed. © 1997 Elsevier Science Ltd. All rights reserved. 

We will consider the simplest problem. Suppose that a closed contour E (Fig. 1), surrounded by water, 
lies in the horizontal (x, y) plane and that, at a point A within this contour, there is point sink which 
approximates a well from which oil is pumped. In practice when the difference between the viscosities 
of the water and the oil is taken into account, a breakthrough of water into the well occurs at a certain 
instant of time along the line B A  which corresponds to the shortest distance from the oil-field contour 
to the well. However, if it is assumed that the viscosity of the external fluid (water) is equal to zero, the 
pressure p at the contour ~£ will remain constant p = P0 all the time, from which it follows that the 
time-dependent lhae on which the velocity potential cp(x,y, t) is constant will be the contour of the domain 
[1, 2] 

q)(x, y, t) = - xao0/Ix = const (1) 

Here Ix is the oil dynamic coefficient of viscosity and ×0 is the soil permeability. 
Differentiating Eq. (1) with respect to t, we obtain a non-linear boundary condition, which must be 

satisfied on the as yet unknown line 

oaq)/at + (aq)/ax) 2 + (a(p/ay) 2 = 0 (2) 

Here o is the soil porosity 
Hence, in this a simplified scheme [1-3], the problem of the flow of oil surrounded by water in a 

headed reservoir reduces to finding the harmonic function q)(x, y, t) with condition (2) on the contour 
~£, the initial shape of which is specified. 

The solution of this problem using the Dupuit formula for the flow rate in the case of the inflow of 
oil to an ideal well is sought [2, 3] in the form of the series 

Z = At (t)~ + A: (T)~ 2 +... +A, (t)~" + .... ~ = e i°, z : x + iy (3) 

where the complex variable ~ = ~ + iq is such that the point ~ = ~ corresponds to the well centre at 
the pointA and the circle ~ = e i°, where 0 ~< 0 ~< 2re, corresponds to the contour ~ .  The f unc t ionsA i ( t )  
(i = 1, 2 . . . .  ) are real-valued functions of time t. 

Solutions of the problem of the form (3) obtained by Kochina [2, 3] have also been described in detail 
in [4]. 

The case when the contour ~ is initially a circle of  unit radius with an eccentrically located well and 
= c is a real number was considered in [2]. The complete solution of the problem can be found. 

Series (3) consists of an infinite number of terms. Good agreement was obtained with the results of 
experiments [5]. 

A second example was considered in [3]. The equation of the initial oil-field contour was given in 
the parametric form 

: + ( 4 )  
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Fig. 1. 

4 = e iO (5) 

where a is a real, positive parameter  and ~ = 0, that  is, the well A is located at the point  z = ~ = 0. 
It can be shown that, in this case, series (3) is a second-degree polynomial  

z = AI ( t )  ~ + A2(t)~ 2 (6) 

Solution of  the form 

z = al( t)  ~ + A2(t)~ 2 + ... + An(t)~" (7) 

were subsequently called polynomial plane algebraic curves. 
We shall now consider the initial curves (4) and (5) for various values of  the parameter  a in greater  

detail. 
When  a = 0, we have a circle with the well at the centre. 
Equat ion (4) can be rewritten in the explicit form 

x = c o s 0 + a c o s 2 0 ,  y = s i n 0 + a s i n 2 0  (s) 

It has been shown in [3] that  the curve (4), (5), (or (8), (5)) is a cardioid when a = 1/2. 
Putting x = x'  - a, y = y '  in formulae (8), we obtain the equat ion of  the limaqon of  Pascal in polar 

coordinates  

r = k cos ¢p + l (9) 
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where  k = 2a, l = 1, in the coordinates  (x ' ,y ' ) .  W h e n  a = 1/2, this is a cardiod, a curve with a corner  
point.  

I t  is convenient  to distinguish five cases: (1) 0 < a < 0.25; (2) a = 0.25; (3) 0.25 < a < 0.5; (4) a = 
0.5; (5) a > 0.5. 

We shall dwell ,an the fifth case when there  is a loop. It  follows from (8) that  y = 0 when 0 = 0, 
and cos 00 = -1/2zr where  a > 1/2 and x = cos 00 + a cos 200 = - a. This is the start  o f  the loop. When  
0 = ~, we have x =: a - 1 and this is the end of  the loop. Four  curves (in x, y coordina tes  in accordance 
with formulae  (8)) are shown in Fig. 2: for a = 0.2 ( the first case), 0.5 (the four th  case), and 0.8 and 1 
(the fifth case). In the Cartesian coordinates x, y, these are plane algebraic curves o f  the tenth order  
(of  the eighth o rder  when a = 1) which have an isolated singular point  x = y = 0 ( there is no  such point  
when  a = 1) in addit ion to the singular points  which exist in the case o f  the l ima¢on of  Pascal and a 
cardioid. 

The  solution o f  the p rob lem of  the mot ion  of  an oil-field contour,  that  is, the interface between the 
water  and the oil, subject to the condit ion that  the initial con tour  has the fo rm (4), (5) has been given, 
as already noted  above, in [3] and it has also been  described in [4] and has the fo rm (6), whereAi( t )  (i 
= 1, 2) are certain functions which are de te rmined  during the course o f  the solution and Z/Al(t) is "as 
though  of  the fornl"  (4) with a parameter  a which increases with time. 

The  results o f  this solution are: i f a  ~< 1/2 then a c u s p x  = -(a/4)l/3,y = 0 is fo rmed  in the contour  
at a certain instant o f  time t l />  0, and, when a = 1/2, we have x = -1/2, y = 0 ( there is already a cusp 
x = -1/2 ,y  - 0 in the initial con tour  in this case). W h e n  a > 1/2, there is a loop in the con tour  (8), (5), 
and this con tour  canno t  be taken as the initial contour .  

The  solution o f  the problem therefore ceases to be one-sheeted  until the instant the  water  breaks 
th rough  ihto the well (starting f rom the instant o f  time h).  

Many investigator:s have dealt with problems of the motion of an oil-field contour. We will now consider some 
of the results obtained. 

Galin [6] showed llhat, under polynomial instant conditions, there is a loss of one-sheetedness of the solution 
at-a certain instant ot time prior to the instant when water breaks through into the well, and this result is completely 
in agreement with the examples considered above [2, 3]. This phenomenon does not occur in the case of an initial 
contour in the form of a circle (unlike the case of an initial contour of the form of (4), (5)). 

The case when fluid is forced into the well has also been considered in a number of papers. In this case, the 
domain of motion does not contract with time but expand, and no corner point is formed. In the Dupuit formula, 
it is now necessary to assume that the flow rate is positive rather than negative. 

The third-order polynomial mappings 

z = Al(t) ~ + A2(t)~ 2 + A3(t)~ 3 

have been considered in [7]. 
Particular attention was paid to the formation of corner points in such motions. In the general case, the singularity 

is the same as in the problem with a second-order polynomial which has been described above, but, in the case of 
5 specially adjusted initial data, a singularity of order /2 is obtained instead of this singularity of order 3/2. 

Loss of one-sheetedness of the solution also occurs before the instant when water first enters the well in problems 
of this kind with the oil withdrawal from the domain. 

Mathematically sitailar problems, with the formation of cusps on the periphery, have been considered in [8], 
where Richardson's method [9, 10] is followed; the solutions of the problems are also not continuable after the 
formation of cusps. Closely related problems are considered in [11-14]. 

Views on the failure to take account of capillary forces in the problem under consideration and on the fact that 
it is impossible to discard inertial terms in the equations of motion while retaining the quadratic terms in condition 
(2) have been expressed by Danilov [15]. He showed that, if account is taken of the action of surface tension forces, 
then a cusp does not occur at the interface of immiscible fluids. However, the calculation was only carried out for 
the case of an initial contour in the form of a circle with an eccentrically located well. 

Hi ther to ,  it has been  assumed that the water  viscosity Ix- can be neglected compared  with the oil 
viscosity It. We shall now drop  this assumption. 

A series of experiments, which represented a model of the contraction of an "off-field contour" [5] in a horizontal 
Hele--Shaw cell, have been carded out at the Institute of Mechanics of the Academy of Sciences of the USSR. Similar 
experiments have been conducted under Danilov's guidance [15]. A fairly accurate form of the subsequent contours 
was obtained in these experiments for an initial circular shape of the contour which has been considered theoretically 
above. In the domain 'which is closest to the "well", a contour with smooth outlines, without the formation of a cusp 
up to arrival at the well itself, was always obtained. However, there can be sharp changes in the shape of the contour 
at high local velocities, and the penetration of the less dense fluid into the denser fluid is unstable. 
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Note that the problem of the stability of its motion with respect to infinitely small perturbations is intimately 
associated with the problem of the progress of such a contour. Such problems have been investigated in [16-18]. 

Displacement instability affects the development of deposits of highly viscous oil under waterdrive conditions. 
An experimental investigation of such instability during the displacement of oil by water has been carried out on 
transparent horizontal models of an unconsolidated rock reservoir [19]. It was shown that, if Ix/Ix. <~ 10-13, then, 
even at comparatively high velocities, flow under the action of capillary forces becomes stable. However, if 
IX/Ix. > 13, then, for the flow to be stable, it is necessary to reduce the velocity down to very small values. 

A group of foreign scientists [20] has made a theoretical investigation of the effect of capillary forces on the 
stability of the interface. It was found that, at sufficiently low velocities, the front motion may become stable due 
to capillary forces even for an unfavourable ratio of the viscosities. However, in order to achieve quantitative 
agreement with experiment, the concept of an "effective" surface tension had to be introduced, which was about 
40 times greater than the true surface tension. This discrepancy was caused by the fact that it was assumed that 
the interface between the phases was infinitely thin and smooths itself out because of the capillary pressure P. Such 
smoothing does, in fact, occur due to the dissipative action of the actual capillary pressure in a porous medium 
P1, and the ratio of the quantities P/P1 of the order of r/R, where r is the curvature of the menisci and R is the 
curvature of the interface. 

In the general case, assuming that the reservoir is horizontal and located between two impermeable reservoirs, 
that there is a single perfect well within the oil-bearing contour and Ix. ~ O, the motion of both the water and the 
oil will occur in doubly-connected domains [21, 22]. 

We shall assume that ~t = ~t. and that the oil-field contour is initially a circle of  radius a, the contour 
of the reservoir charging domain is also a circle but of  significantly greater  radius on which the pressure 
is constant (p = P0) and at the centre of  which there is a well. Here,  the well is either located at the 
centre of  the oil-field contour or at some other point within this contour, and the well has the form of 
a circle of  small radius r,4 on which the pressure is constant (p = Pl < P0)- 

In such a case, the complex potential of  the steady-state motion in the well has the form 

w = ---~-Q In z 
2n 

where Q is the production rate of  the well per unit capacity of  the reservoir. The dependence of the 
radius of  the "oil-field contour" on the time t takes the form [21-23] 

r = 4 4 '  - Qt / (no)  (10) 

Here  r0 = r0(0) is the radius vector of  the initial oil-field contour and 0 is the polar  angle. 
It  is clear from formula (10) that, at the instant of  time 

t A = n~s(r~ - r2a)/Q (11) 

all the oil will be pumped  off by the well and, when t > tA, only water will enter  the well if the well is 
located at the centre of  the initial oil-field contour (r0 = a). Otherwise, a mixture of  oil and water  will 
enter the well when t >I ta and the shape of the contour will change with time, depending on 0 and t. 
It  is necessary to replace r0 by r0min in formula (11). At a certain instant of t ime tl > ta, it becomes 
uneconomic to draw off the 0il together with the water  and the well will be shut down with the residual 
oil remaining in the reservoir. 

If  the well is located on the circle itself and rA = 0, then t = 4noa2cosZ0/Q, and water  already starts 
to enter the well at the initial instant of t ime t = 0, when 0 = x/2, and all the oil will be withdrawn by 
the well at the instant ta = 4n(Ia 2/Q. 

In this case, the equation of curve (10) in Cartesian coordinates can be written in the form (x = 
Qt / (no ) )  

(x 2 + y2 + x)y2 = x 2 (4a 2 _ x 2 _ y2 _ 'c) (12) 

This is a plane algebraic curve of the fourth order; x = y = 0 is a nodal point. 
Curves (12) (where "c is parameter)  are a special case of  Perseus curves, that is, the lines of intersection 

of the surface of a torus by a plane which is parallel to the axis of the toms and is tangential to an internal 
2 part  of  its surface (when x = 2 a ,  curve (12) is Bernoulli s lemniscate). 

On changing to Cartesian coordinates (x, y) in formula (x ,y )  in formula (10), we obtain sixth-order 
plane algebraic curves (up to the instant when Water enters the well, the centre of  the well (the point 
x = y = 0) is an isolated singular point and a nodal point after that instant). 
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In general, problems on the co-current filtration flow of two or more fluids with different physical 
properties, including problems on an oil-field contour without the simplifying assumptions which have 
been considered here, are very complex. A number of such plane and spatial problems has been described 
in [21, 24]. 

This research was carried out with financial support from the Russian Foundation for Basic Research 
(95-01-02860b). 
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